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Figure 1: Top 10% of edges in normalized co-occurrences graph

ABSTRACT
A critical role of higher education is the ability to prepare students
for the job market. Through their degree, the courses aim to help
the student build a set of skills that will make them match the
requirements of themarket and be a valuable element for a company.
From the school perspective, understanding the skills required from
the job market is key to provide adapted courses and teachings for
the students. This work aims to analyze the swiss job market by
mining job offers data online and building a graph of skills from
those offers. Then, we want to evaluate how different EPFL courses

succeed in helping the student learn the appropriate skills. This
work aims to provide metrics that help to select and tailor the
courses to provide the students with adapted study programs.

1 INTRODUCTION
In the goal of understanding the job market skills requirements,
and how these skills relate to the teachings given at EPFL, we aim
to build a graph that links the job market skills with the concepts
taught at EPFL from the EPFL Graph [1].
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Main job categories
Admin / HR / Consulting / CEO

Banking / Insurance
Catering / Food / Tourism

Chemical / Pharma / Biotechnology
Construction / Architecture / Engineer
Electronics / Engineering / Watches

Finance / Trusts / Real Estate
Graphic / Art / Typography / Printing
Information Technology / Telecom

Machine / Plant / Engine / Manufacturing
Medicine / Care / Therapy

Marketing / Communications / Editorial
Public / Administration / Education / Social

Purchasing / Logistics / Trading
Sales / Customer Service / Administration

Sport / Spas / Wellness / Culture
Surveillance / Police / Customs / Rescue
Vehicles / Craft / Warehouse / Transport

Table 1: Job offers website main categories

Through this project, we build a dataset of 64000 job offers. We
also build a dataset of skills with equivalentWikipedia concepts and
related keywords. We then compute a graph of skills and iteratively
improve and analyze it.

2 IMPLEMENTATION
This project was divided into 3 main milestones. The first was to
explore the ’Jobs.ch’ website and use web scrapping to build a job
offers dataset. The second step was to define and build a skills
dataset that is connected to Wikipedia articles (corresponding to
EPFL graph concepts [1]). Finally, use both datasets to build a graph
of skills and analyze how the job market skills correspond to EPFL
courses related concepts.

The different components were all implemented using Python3
programming language [2] and Jupyter notebooks (IPython [3]) to
separate the processing tasks, and visualize the data at different
steps.

2.1 Job offers dataset
The first task of the project consisted of mining job offers descrip-
tion text. We then use the description to find the skills required
by the job market. To get those jobs description, we perform web
scraping, data cleaning, and translation as preprocessing steps for
our job offers dataset.

2.1.1 Website structure. The first task to mine data from the job
offer’s website was to understand its structure. How are the job
offers stored? How to access them using URLs or interactions? And
how to extract the content from them?

The first observation we made was the job categories hierarchy.
These categories are used in the website to search the jobs. The
Table. 1 present the first level of categories.

Then, more specific categories can be accessed from the website’s
jobs filtering option or directly via an id in the URL. We observed

that, for each job category page, thewebsite has a list on the left with
24 job ids, and up to 100 list pages. We note that for all categories
that contain more than 2400 jobs, those jobs ids are not accessible
from the category page.

Finally, the website enables access to a job offer page given a job
id (either a hash or an integer id). On the job offer page, we can
access three tabs with job’s information:

• Job description contains an HTML formatted job descrip-
tion. The is the part we are most interested in.

• Info contains the job offer’s dates, related categories, posi-
tion type, and time availability requirements.

• Company contains details about the company posting the
job, such as rating, size, industry, website link, or location.

2.1.2 Tools and techniques. To mine the data from the website, we
used multiple python tools that we describe in this section. Those
tools helped us change dynamically our IP address, extract specific
HTML blocks or text from an HTML page, and navigate on the
website.

• Tor enables us to protect our IP address or avoid being
blocked after too many requests, we used the Tor proxy [4].
This enables us to query the website through a circuit (list
of tor nodes from which our network packet goes through
between your computer and the website’s server, to ensure
anonymity), and change our IP address regularly. Our imple-
mentation followed this tutorial [5].

• SeleniumWebDriver helped us interact with the website
from a browser interface (e.g. navigate into the website, click
on buttons/tabs) [6]. This helped us clicking on the job offer’s
page tabs in an automated manner to access the different
information.

• Requests python package [7] provide easy-to-use methods
to build HTTP requests. This was used to download the
HTML pages for job categories, and job ids.

• BeautifulSoup python package [8] enables to parse HTML
pages and retrieve HTML blocks to find page’s content easily.
It was used to extract the job description, ids, or categories
from the website using the HTML class of containers with
the searched information.

2.1.3 Web scrapping. After exploring the website structure and
testing the different tools on the website, we started tomine the data.
At the time of the scrapping (March 2021), the website contained
68000 job offers.

The scrapping of the job offers was completed in three steps.
First, getting the job categories. These categories were then used
to extract lists of job ids. Finally, the job ids were used to get the
job offers data.

Job category. To find the job categories, we observe that they
were represented using a three-digit index. Using a counter, we tried
to query the website with id values ranging between 0 and 300 using
the following URL: https://HOST/en/vacancies/?category=C_ID.
We observed that the website contains category ids from 97 to 261
(165 categories). The main categories listed in Table. 1 correspond
to the first 18 ids. These calls were performed using the Tor proxy
to protect our local IP.
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Job id. On the category page, we can find a list of corresponding
jobs on the left. This list contains up to 24 jobs and continues up to
100 pages. These pages can be accessed directly using a URL: https:
//HOST/en/vacancies/?category=C_ID&page=P_ID (Using the URL
enabled us to avoid needing to click on the "next page" button and
lose time during loading).

From the list, we extracted the job ids of all elements and iterated
over the pages to get all categories’ jobs. Some categories contained
more than 2400 elements and the last could not be accessed using
this technique. Nevertheless, the job categories correspond to a
three-level tree. Therefore, most jobs were associated with several
categories and could be accessed through categories with fewer
jobs.

Using this technique, we extracted 110k ids total and 64k jobs
after removing duplicates. This corresponded to 94% of all available
jobs.

Job offers. After collecting all job ids into a Pandas [9] dataframe,
we needed to download each job offer HTML page. Using the URL:
https://HOST/en/vacancies/detail/JOB_ID/, we accessed directly
the job page given a job id.

At first, we used Selenium to navigate between the page’s tabs
by simulating mouse clicks. We then extracted the data from each
HTML block. This process required to load three HTML pages for
each job offer and wait between the click for the page to load in
the Selenium web browser.

After looking more carefully into the job offer page’s source code,
we observed that all the job’s data were stored into the __INIT__
variable in a script block. This javascript variable contained all
job offer’s data displayed in the different tabs. This was a great
improvement and enabled us to speed up the mining process by a
factor of 3.

All these HTML files can be found in the project’s html.nosync
directory.

For each job id, we saved the corresponding HTML file in case it
was needed for later use.

With an average time per request of 1.2 seconds, the total time
to extract the HTML documents was 64000 × 1.2𝑠 = 21.3ℎ.

2.1.4 Data cleaning . Once we downloaded the job offers’ HTML
file, we needed to process them to build a smaller and easy-to-use
dataset. Also, Switzerland being a multi-languages country, we
needed to translate the job offers into English.

Compute CSV dataset. Using BeautifulSoup, we extracted the
__INIT__ variable the javascript block in the job’s HTML. We then
parsed this object and added it as a row of our pandas dataframe
(This is the jobs_all.csv dataset). We present in Table. 2 some of
the interesting fields in this job offer object. The text field contains
the HTML formatted job description that we will use later. We,
therefore, build another dataset containing only job description and
id (The jobs_id_description.csv dataset).

Translation. The job offers are written in numerous languages
due to Switzerland’s diversity. We show in Table. 3 the distribution
of jobs per language. We need to translate the job offers into English
to have a ready-to-use dataset.

First, we used the langdetect library [10] to get the language
for each offer and build the table discussed above.

Key Value
id 000005639743c5ce05c5ddfef0061cdef...
title Regulatory Affairs Manager
text <h2>Regulatory Affairs Manager</h2>...
place Rotkreuz

company F. Hoffmann-La Roche AG
isActive True

publicationDate 2020-12-18T20:35:05+01:00
categories /97/100/127
expiredOn 2021-03-16
salaryFrom NaN
salaryTo NaN

popularKeywords ’Strategy’, ’Legal’, ’Supply Chain’, ...
Table 2: Job offer content example

Language Count
German 51205
English 7070
French 5953
Italian 299
other 98

Table 3: Number of job offers per language

Then, to translate the job offers, the initial plan was to use the
lab’s google translate API access. For the translation of our dataset
(17.6 millions words, 139.9 millions characters), the API pricing [11]
is 20$/million characters, corresponding to a total of 140 ∗ 20$ =

2800$. This was not affordable, so we searched for solutions to
drastically reduce the number of characters to translate.

The initial solution we came up with was to translate sentences
individually the sentences for each offer. By doing so, we could avoid
translating the same sentence multiple times and reduce the total
number of characters to translate. To do so, we computed a hash
for each unique sentence, and associated each job id with a list of
hash (See description_hash.csv dataset). We also build a dataset
containing all sentences with their matching hash (See id_hash_
sent.csv dataset). The resulting dataset then contained 441000
unique sentences and 105.9 millions of characters, corresponding
to a reduction of about 24% of the total number of characters. The
API cost was still 2120$ with standard pricing. These results were
interesting but far from enough.

We then searched for alternatives such as offline translation
using a pre-trained model T5 from Google [12], or corpus-based
translation.

Our final solution was to use free python libraries that query
the Google API to perform the translations (such as googletrans,
translate-api, or google_trans_new). These libraries were using
the free trial of the API and enable us to translate the job offers by
chunks of 500000 characters. To bypass the threshold, we used a
VPN to regularly update the IP each time the API was blocked with
too many requests (we didn’t use the Tor proxy because the Google
API blocked the Tor IPs). This helped us build the final cleaned job
offers dataset (See jobs_id_description_translated.csv).

3

https://HOST/en/vacancies/?category=C_ID&page=P_ID
https://HOST/en/vacancies/?category=C_ID&page=P_ID
https://HOST/en/vacancies/detail/JOB_ID/


Pierre Schutz

With an average of 1.5 seconds per request, the total translation
was computed in 26.7 hours.

2.2 Skills dataset
The second step for this project was to build a skills dataset. This
dataset aims to define skills and connect them to Wikipedia con-
cepts. Using this dataset, we will later be able to match job descrip-
tions with skills and then with concepts taught at EPFL.

2.2.1 Skills definition. Building the skills dataset was an iterative
process. We used multiple datasets found online and tested the
results in the graph. We describe here the steps until our final
approach.

Finding dataset online. Initially, we searched for already made
and maintained dataset online. LinkedIn skills are very popular and
widely used, so our initial goal was to find a dataset containing
those skills. Here is a list of the dataset we found.

• LinkedIn & WorldBank 1
• LinkedIn 2
• LinkedIn 3
• LinkedIn 4

Nevertheless, datasets 2, 3, and 4 were noisy because they were
built by users: numerous values were not corresponding to skills,
others were acronyms without context. They also were of big size
(more than 10000 items), so finding skills into them manually was
hard.

Initial dataset. For the aforementioned reasons, we decided to
proceed by creating manually the skills dataset. By doing so, we
would be able to find the most frequent terms used in our data
and select the skills in those. We used dataset 1 (LinkedIn and
WorldBank) as a basis as it was clean and relatively small (around
100 skills). Building the skills dataset was an iterative process. We
tried multiple datasets to build the graph until our final approach.

Add skills from keywords. The first iteration goal was to add
skills that are specific to our job description dataset. Indeed, the
WorldBank dataset was very general and did not describe well our
dataset. To fix this, we used the keywords generated by the different
NLP techniques (see 2.3.1) to find the most frequent terms that were
referring to skills.

To perform this task, we faced a major challenge: defining the
notion of skill. Indeed, choosing between what is a skill and what
is not was a difficult task because of the ambiguous and large
definition of skill. Wikipedia defines a skill as: "A skill is the learned
ability to perform an action with determined results with good
execution often within a given amount of time, energy, or both.
Skills can often be divided into domain-general and domain-specific
skills". From this definition and the different skills seen in the online
datasets, we distinguished four types of skills:

• Human Abilities: Abilities applied to the work market. This
is represented in our dataset by the "Soft" (any non-domain
specific skill), and "Language" (multiple languages writing
and speaking abilities) category of our dataset.

• Domain-Specific knowledge: This corresponds to knowledge
in a domain (such as "Software development", or "Pharma-
ceutics") and is represented in our dataset by "Business",

"Law", "Health", "Science", "Engineering", and "Humanities"
categories.

• Technology usage skill: The ability to use specific software
(e.g. Microsoft Excel) or programming language widely used
in the industry. This is represented in the dataset by the
"Software" and "Programming" categories.

• Diploma: Even though this is not specifically a skill, this is
something that is often required by job offers. Therefore, we
consider it as a skill as it discriminates against the candidates
for a job ("Diploma" category in our dataset).

Using these categories, we added all skills terms found in the
1000 most frequent keywords using multiple keyword extraction
techniques (keyBERT, TF-IDF, and NLTK tokenizer).

Final approach. The above approach was not satisfactory for
multiple reasons. First, some skills terms were too broad and were
matching with too many job offers (e.g. "Engineering", "Science",
"Software", or "Innovative", see Figure. 2). We removed all those
skills from the final dataset. Then, the second issue was the lack
of "Software" and "Programming" categories skills. Indeed, those
skills constitute some of the most important skills for engineers,
and many are used in EPFL courses. To improve this, we searched
for Technology related skills and found an adapted dataset in the
O*NET database. Matching job offers keywords with the dataset
helped add 40 more skills. Our final skills dataset contains 313 skills.

2.2.2 Wikipedia concepts. To match the job skills with the EPFL
courses, but also to have a standard representation of the skills, we
used Wikipedia articles and their ids to identify the skills. Indeed,
the EPFL graph uses Wikipedia articles as concepts and associates
courses with them. Therefore, while building our skills dataset, we
wanted to match those skills with Wikipedia articles.

To do so, we implemented a semi-automated program using the
wikipedia-api [13] python package. This package enables to query
of the Wikipedia website pages and search functionalities.

Using our skills dataset, we used the wikipedia-api package to
search for an article using the skill name. This search leads to 4
possible outcomes:

• Page found, rightWikipedia page: This is the best case, where
nothing needs to be done and the associated Wikipedia con-
cept is automatically found for a given skill.

• Page found, wrongWikipedia page:We need manually check
that the page is wrong, and then search for a more appropri-
ate page on Wikipedia and add it manually.

• Disambiguation page: In this case, our program detects it and
proposes to manually select in the list of proposed pages the
most adapted one. If none match, the program tag handles it
as "Page not found".

• Page not found: We have to manually search on Wikipedia
using similar terms and concepts.

Using this process enabled us to match most of the pages automat-
ically. Nevertheless, due to disambiguation, invalid page, or page
not found cases, a manual review and errors handling was required
to associate all skills.
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Generally, there might not be a one-to-one mapping between
skills and Wikipedia articles. For instance, numerous human quali-
ties do not have an associated Wikipedia article but only a dictio-
nary definition (e.g. Willingness or Friendliness). In these cases,
we manually associated a Wikipedia article that is close to the
skill. Also, some skills can have more than one concept associated
with them. Due to time constraints, we remained with a one-to-
one mapping in this project, but this could be implemented as an
improvement.

2.2.3 Skills’ keywords. For each skill, we manually added a list
of keywords with synonyms to enable matching the skill with a
bigger set of job description keywords. We later refer to those as
skill_keywords, and will discuss their use in more detail in the
section 2.3.2.

2.3 Graph of skills
Once the job offer and skills datasets were ready, the final goal was
to build a graph of skills. This graph aims to represent the rela-
tionships between different skills using the job market information.
Therefore, we must use the job offers dataset to associate the differ-
ent skills defined in our skills dataset. Once we associated the skills
together in a graph, we want to match them with the EPFL courses
using the "Edges_N_Course_N_Concept_T_Semiauto" collection
in ArangoDB.

The different steps to build the graph are the following:
• 1. Extract important keywords from job descriptions (later
called description_keywords).

• 2. Build a skills dataset, map to Wikipedia concepts, and
define a set of keywords associated with each skill (later
called skill_keywords).

• 3. Match the description_keywords and the
skill_keywords to compute a list of skills for each job offer.

• 4. Compute a similarity metric using the job offers to build
the edges of the graph.

2.3.1 Keywords extraction. To extract meaningful keywords from
the jobs’ descriptions, multiple tools and algorithms were tested.
We discuss here the different methods, and the chosen approach.

Wikify. The original implementation idea was to used the lab’s
Wikify API [14] to associate directly the jobs’ description with
Wikipedia concepts and then select a subset of those concepts that
corresponds to skills. This approach provided interesting results
as we can see in Figure. 3, where numerous of the most frequent
terms are skills. Nevertheless, we faced issues using the API. First,
for some job descriptions with a short text, the API didn’t return
any results (this was later fixed by adding a boost parameter to the
query). Also, the concepts returned were something far from the
keyword the associations were wrong (requiring to filter the results
using the graph score parameter). Then, the extraction process was
slow as the API require up to 7 seconds per request. Finally, due
to a technical issue with the API though the course of this project
making it unavailable, this option was abandoned.

NLTK. A naive approach used the Natural Language Toolkit
(NLTK) [15] to extract words from the text using the NLTK tok-
enizer. It then computes the term frequencies and inverse document

frequency (TF-IDF).We built a histogram of keywords by tokenizing
the job descriptions using NLTK, and removing stop words using
NLTK’s ’english’ stop words dataset. The resulting histograms show
the most frequent keywords in Figure. 4. This solution was interest-
ing by its simplicity and computing efficiency but did not make use
of the terms meaning to compute keywords. It and also gives a very
simplistic notion of importance within a document (frequency), and
returns one-word keywords.

SpaCy. A slightlymore advanced approach used the Spacy python
NLP library [16] to extract keywords from the text. We used Spacy’s
default NLP model "en_core_web_sm" to parse a subset of the job
descriptions. Spacy ’nlp’ object enables to extract entities (or ents)
corresponding to concepts from the text. We used those extracted
entities to build a histogram of concepts from the text (see Fig-
ure. 5). This technique provides a better interpretation of words in
the text and return keywords that correspond to concepts, but do
not provide a metric to rank those keywords by relevance.

KeyBERT. The final approach we chose makes use of a recent
algorithm working on top of BERT (a state-of-the-art transformers
model [17]) called keyBERT. Bert model advantage is to analyze
words within sentences and compute word embeddings that are
dependant on the sentence structure. The keyword extraction algo-
rithm named keyBERT [18] is a basic keyword extraction algorithm
implementation that aims to outperform Rake by taking advantage
of the BERT embedding and provide a list of keywords of length
k with the associated score. Here is a short description of the pro-
cess from the project’s GitHub: "First, document embeddings are
extracted with BERT to get a document-level representation. Then,
word embeddings are extracted for N-gram words/phrases. Finally,
we use cosine similarity to find the words/phrases that are the most
similar to the document. The most similar words could then be
identified as the words that best describe the entire document.".

In our implementation of the job description keywords extrac-
tion, we chose to select a length of both 1 and 2 words keywords
and extracted the 30 most important for each. This leads to getting
constantly 60 keywords for each job offer.

The keyword extraction required on average 2.4 seconds per
job offer, for a total of 42.5 hours for the full dataset. The job_id_
description_bertify.csv dataset contains the extract keywords
along with the job id and descriptions.

2.3.2 Keywords matching: mapping description to skills. After ex-
tracting the description_keywords and building the skills dataset
with skill_keywords, we wanted to use those keywords to asso-
ciate a list of skills to a job description.

GloVe. The initial goal was to take advantage of a machine learn-
ing model and build a spatial representation of keywords using
some word embeddings. Indeed, using this representation, we could
use space metrics such as euclidean distance to match keywords
together. Nevertheless, after the first test with GloVe model (100
dimensions, 50 million words) [19] that did not give satisfying re-
sults (too many keywords with no direct meaning were matched
with skills, and it was slow to load and compute the embeddings),
we decided to go with a simpler method.
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Exact matching. The baseline approach we implemented con-
sisted into a direct matching between description_keywords and
skill_keywords. This means that a skill was matched and added
to a job offer if at least one of the skill_keywords matched at
least one of the description_keywords. This approach was sim-
ple but failed to match together different forms of the same word
(conjugation, plural). The next method fixes this issue.

Porter Stemming. To fix the aforementioned issue, we added the
Porter Stemming algorithm [20] from the NLTK library to compute
the root of keywords before matching them. This method is still less
generic than comparing to word embedding and requires to define
precisely the set of keywords for a given skill, but is fast and to
not require a model. The stemming enabled to match all keyword
forms (example: entrepreneur, entrepreneurs, entrepreneurship,
entrepreneurial). The Figure. 8 shows the improvement using Porter
Stemming.

The resulting dataset containing the job and associated skills is
jobs_id_skills.csv. We have on average 4.3 skills per job (this is
low, but can be explained by our small skills dataset, and restrictive
matching method). To observe how our matching performs, we
tested it with a few jobs to see how the related jobs title are similar
(see Figure. 7).

2.3.3 Skills similarity. After extracting keywords from the job of-
fers and matching them with skills, we had to find a metric that
describes well the relationship between keywords in the job offers.
This metric will be used to associate a weight to the edge between
two skills in the graph.

Co-occurrences. The first metric we implemented was to count
the total number co-occurrences of skills in all job offers. Therefore,
in our graph, the edge between two skills corresponds to the number
of times these two skills occur together in a job offer. The approach
succeeds to highlight skills that are connected, but give advantage
to skills that appear in most job offers even if they are not strongly
connected with a specific set of skills.

Normalized co-occurrence. This second approach aims to prevent
having the most occurring skills like "German" have a high rating
because of their high frequency in the dataset. Now, for a pair
of skills, the score corresponds to the number of co-occurrences
divided by the average number of occurrences of each two skills.

𝑤 (𝑠1, 𝑠2) = 2 × (#𝑠1&𝑠2)
#𝑠1 + #𝑠2

(1)

With𝑤 (𝑠1, 𝑠2) the weight between skills 𝑠1 and 𝑠2, #𝑠1&𝑠2 the
number of jobs where 𝑠1 and 𝑠2 are present, and #𝑠𝑖 the number of
jobs where 𝑠𝑖 is present.

2.3.4 EPFL courses analysis. The last task consisted of computing
EPFL courses metrics using the graph of skills thanks to collections
in ArangoDB that map the EPFL courses to Wikipedia concepts.

After loading the courses, nodes from courses to concepts, and
the concepts, we tried to match those concepts with the job market
using the skills. The goal was to compute centrality metrics for the
different course concepts to see how different courses tackle very
specific areas or are bridging between multiple domains. We were
also interested to see which software of programming language is

taught by each course and how much those are then needed for the
job market (Figure. 9 shows popular software and programming
languages in the job market). Nevertheless, none of the skills in the
skills graph were present in the courses related concepts. These
results happened late in the project, we did not have time to solve
this issue. We discuss this in the section 4.

3 RESULTS
In this section, we present the different results obtained in the
project starting from the dataset generated and then discussing the
generated graphs and visualizations.

3.1 Datasets
At the end of each processing step, we computed and saved a dataset
to facilitate future work and reproducibility. We summarise here
the different datasets generated:

• Job categories (id, name, Wikipedia concepts): csv.nosync/
categories_id_name_wiki.csv

• All job ids: csv.nosync/jobs_id.csv
• Mined HTML pages: html.nosync/
• Job offers full data: csv.nosync/jobs_all.csv
• Cleaned job id and description: csv.nosync/jobs_id_description.
csv

• Translated job id and description: csv.nosync/jobs_id_
description_translated.csv

• Job id, description, and keyBERT keywords: csv.nosync/
jobs_id_description_bertify.csv

• Job id and associated skills: csv.nosync/jobs_id_skills.
csv

• Skills with Wikipedia concepts and keywords: csv.nosync/
final_skills.csv

Other datasets:

• Job offers with NLTK extraction terms: csv.nosync/jobs_
id_description_nltkfy.csv

• Skills datasets found online: csv.nosync/skills/
• Intermediary translation datasets (french, italian, german):
csv.nosync/translation/

• Job description sentences hashing: csv.nosync/hashing/

3.2 Graph of skills
Two different graphs of skills were built during this project, corre-
sponding to the two skills similarity metrics used (co-occurrences
without and with normalization). The graph with normalization
provides better results and corresponds to our final result (where
the other is used to compare). The resulting graphs are heavily
connected as they only require one co-occurrence between two
skills to build an edge. To improve the readability in the graph
visualizations and highlight the strong links between certain nodes,
we built a filtered version of the graphs that only contains the most
important edges between the skills. These filtered versions are used
for the visualizations.

Here is are the graphs and visuasualizations created:
Graph:

• default.gefx: Graph with co-occurrences weights
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• default_filtered.gexf: Graphwith co-occurrencesweights
filtered (edges with at least weight = 100)

• norm.gexf: Graph with normalized co-occurrences weights
• norm_10.gexf: Graphwith normalized co-occurrencesweights
with only the edges of 10% highest weights

• norm_1.gexf: Graphwith normalized co-occurrencesweights
with only the edges of 1% highest weights

Visualizations:

• visualization_default_filtered.gephi: Visualization
of graph for co-occurrences filtered (edges with at least a
weight of 100).

• visualization_norm.gephi: Visualization of graphs for
normalized co-occurrences with the Top 10% and Top 1% of
edges.

In the different visualizations, the node size corresponds to their
degree, and the color corresponds to the skill category.

From the visualizations, we can observe how normalizing the
weights improved our graph. Indeed, in the co-occurrences weights
filtered graph (see Figure. 10), we observe the most frequent skills
to have the highest degree and have high weights with many nodes
(e.g. "German", "Management", or "Teamwork"). In the normalized
graph (see Figure. 1 and Figure. 16), this is different. More nodes
have higher degree, and for example keywords related to computer
science that are strongly connected to their domain have a high
degree (e.g. "Programming", "Python", or "Cloud"). This technique
achieves the expected result having a high edge score between rare
but strongly connected skills.

We can observe how "Python" and "Computer Hardware" in
norm_10 graph or "Java" in norm_1 graph are well connected to
skill in their domains (see Figures. 12,14, and 17). Also, we see
how a more general term like "Computer Science" (in norm_10)
connects nodes from it’s domain area and but also outside "Lead-
ership" or "Entrepreneur" (see Figure. 13). On the opposite, in the
graph default_filtered, the compute science node has only few
connections to nodes with high degree.

In general, this graph of skills succeeds to show relationships
between similar skills in the job market. Nevertheless, the graph is
still heavily connected, and filtering nodes based onweight required
to see clusters appear. Also, the small size of the skills dataset makes
it hard to observe clearly defined and distinct domain areas. Indeed,
our approach fails to get all the information from the job offers, as
from the 60 keywords extracted, we only get on average 4.3 skills
per job.

4 DISCUSSION
Through the realization of this project, numerous design and imple-
mentation choices were made, some because of technical difficulties,
time, or resource constraints. In this section, we discuss the difficul-
ties faced during the project, the chosen methods, and future work
on the project.

Wikify API. Due to extensive computation time and issues with
the API server at the end of the project, the keyword extraction
using the Wikify API was not investigated further. The mapping
between job description and Wikipedia concept could be used to

directly match the job offers with the set of skills and enable to
cover a much larger dataset of Wikipedia concepts.

Skills dataset. The manual building of skills dataset was a mis-
take. Even though it enabled to reduce the noise of the data, and
have a straighforward solution for the skills, the solution does not
scale and required an extensive amount of time to compute. Also it
failed to overlap with the concepts of the EPFL courses. Finally, the
definition of skills being complex, the selected terms were based on
our judgment that is not the most knowledgeable. A better defini-
tion on the skills dataset, using the O*NET database could strongly
improve the graph.

Skill to Wikipedia matching. In this project, we also built manu-
ally (using a semi-automated program) the matching between skills
dataset and list of Wikipedia articles. Using metrics like "Leven-
stein" distance, or the EPFL Graph and Wikify keyword to concept
mapping could enable to scale this associated, and match multiple
Wikipedia concepts to skills.

Job description and skill keywords matching. The natural lan-
guage can often be ambiguous, and the same meaning can be found
in numerous words in different texts. Therefore, one of the chal-
lenges of this project was to be able to match all different meanings
of the same skill with it. To accomplish this, two simple solutions
were used (add a list of related words to skills keywords, and use
stemming). Nevertheless, word embedding techniques are known
to provide good results and are a more scalable approaches. Using
BERT or GloVe models to compute embedding, and adapted metrics
should improve the keyword matching and increase the number of
skills found per job offer.

Job description keywords score. The job offer keywords extracted
using keyBERT have a score representing the importance of the
keyword in the text. This score was not used in the project, but
could impact the weight of the skills in a job offers, and therefore
the nodes/edges in the graph of skills. This emphasizes the idea
that in a certain job offer, certain skills are more important than
others.

Position/Job-specific skills. We can expect certain jobs to require
a certain type of skills. To improve the job description to skill
matching, we could make use of the job title (or job description)
to build a set of job-specific skills. Then by matching the different
job offers to the associated job/position, we can add implied skills
for certain position that are not seen in the job offer description.
This would enrich the skills list when the job description does not
provide sufficient information about the required skills, and increase
the average number of skills per job offer. It would also enable to
categorize the different job offers and have a better understanding
of what type of job requires what skills.

EPFL courses analysis. Through this project, we failed to focus
on the concepts related to EPFL and rather worked on more gen-
eral skills. Due to our small dataset size, this leads our graph to
be completely disconnected from the EPFL courses concepts. An
increase in the skills dataset, or adding skills found in the course’s
concepts could fix this issue. Also, we observed that none of the
"Software" or "Programming" skills added and taught at EPFL were
not present in the list of course’s related concepts. For example,
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the "Java" concept is not connected to the "Introduction to pro-
gramming" or "Object-oriented programming" classes even if those
are teaching programming in java. The current courses’ concept
representation is mostly based on the course description. Student
feedback, learning supports, or introduction course material could
be used to enrich the concepts or skills associated with the course,
and potentially help the graph and concepts to be connected.

5 CONCLUSION
Through this project, we were able to build ready-to-use datasets of
job offers from the Swiss job market and skills. By testing different
NLP techniques to extract keywords from the job offers, we could
observe the different skills that are the most common requirements
in the job market. Finally, using the our graphs visualizations, we
illustrated the relationship between skills in the job market.
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APPENDIX

Figure 2: Skills Graph using intermediate skills dataset (Normalized and Filtered Top 10%)
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Figure 3: Job description most frequent keywords (Wikify API) - first 1000 jobs
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Figure 4: Job description most frequent keywords (nltk) - 64k jobs

11



Pierre Schutz

Figure 5: Job description most frequent keywords (SpaCy) - first 100 jobs
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Figure 6: Job description most frequent keywords (keyBERT) - 64k jobs
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Figure 7: Examples of jobs with similar set of keywords
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Figure 8: Business skills histogram using Exact matching vs. Porter Stemming
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Figure 9: Programming and Software skills histogram
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Figure 10: Graph of skills with co-occurrences weights filtered (edges with a least weight of 100)
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Figure 11: "Computer Science" skill connections in Co-occurrences graph filtered
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Figure 12: "Python" skill connections in Normalized Co-occurrences graph Top 10%
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Figure 13: "Computer Science" skill connections in Normalized Co-occurrences graph Top 10%
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Figure 14: "Computer Hardware" skill connections in Normalized Co-occurrences graph Top 10%

21



Pierre Schutz

Figure 15: "Reliable" skill connections in Normalized Co-occurrences graph Top 10%
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Figure 16: Graph with Normalized Co-occurrences weights Top 1% of edges
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Figure 17: "Java" skill connections in Normalized Co-occurrences graph Top 1%
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Figure 18: "Management" skill connections in Normalized Co-occurrences graph Top 1%
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