
EPFL ML Text Classification 2019

Maxence Jouve, Rayane Laraki, Pierre Schutz
EPFL

Abstract—Text classification is a challenging problem that
has many applications such as spam filtering and language
identification. Researchers started to address the problem in
the 1980s but with the recent explosion of available data
and advances in Machine Learning, the field gained a lot of
traction. This report details our work on the ”EPFL ML Text
Classification Challenge” where the goal is to use machine
learning to classify tweets. We have to predict if the tweet
contained a ”:)” or a ”:(” smiley. Thus we need to classify a
tweet as positive or negative.
Our best model achieved 0.870 accuracy on the provided test
dataset using BERT.

I. INTRODUCTION

Hosted on the competitive platform AIcrowd, this project
aims to introduce us to text classification tasks. Competitors
are evaluated using the accuracy and the F1-score of their
predictions.

The training dataset contains 2,458,297 tweets. 1,218,655
of them are labelled as positive (they contained a ”:)” smiley)
and 1,239,642 are labelled as negative (they contained a ”:(”
smiley).

In this report, we will first explore the dataset. We will
then try several approaches: computing tweet embedding
from words embedding and training a classifier model on the
obtained vectors, using fastText model for text classification,
and then BERT Transformer model. Finally we will discuss
our work.

II. DATASET EXPLORATION

We realized that tweet were anonymized. Indeed it is
common to mention someone using ”@” or to include a link
to a resource outside of Twitter. Thus the tweets provided
sometimes contained <user> and <url> tags. We decided
to remove those tags as they are only used to make the tweet
anonymous.

Thus when we talk about the basic dataset we assume
tweets with <user> and <url> tags removed.

III. BASELINE APPROACH

The first approach we tried was separated in two parts:
we first needed to obtain tweet embeddings (vectors), we
then trained classification models using them.

A. Using our trained Word2Vec model

1) Word2Vec model:
We decided to use the word2vec model developed by

Google. We took the implementation using CBOW (Con-
tinuous Bag of Words). Given a corpus as input, this model
splits the text in context windows. Words appearing in the
same windows are said to share the same context. Given a
context containing n words we use combinations of n − 1
words as input and try to predict the most likely nth word for
this context. Under the hood, one matrix has word vectors
as row and another contains word vector as column and is
used for computing the most likely word for a context. The
cosine distance metric is used to find the closest word.
Finally, during training, the softmax loss function is used
and word vectors are updated using back-propagation [1]
[2].

2) Training the Word2Vec model:
We trained two different models on the whole train-

ing data provided: one using our basic training dataset
called word2vec.model and one with the same dataset
after word stemming (see explanation below) called
word2vec stemming.model. Here are the parameters we
used:

• min count = 5 words that appear less than in the
whole corpus this number are not considered (users
sometimes use their own slang which justify this pa-
rameter)

• size = 250 size of the word embedding vector (recom-
mended value is between 200 and 300)

• window = 5 size of the context window used for
training

• iter = 30 number of training iteration
The training of these models is done in the file

word2vec training.py.
Finally word2vec.model contains 94,930 words whereas

word2vec stemming.model contains 77,889 words.

3) Preprocessing and tweet embeddings construction:
We considered different way to construct our tweet em-

beddings:
• Basic tweets
• Basic tweets without english stop words
• Basic tweets with word stemming
Stop-words are common small word that might not add

significance to a sentence. Examples are ”I”, ”am”, ”the”...



We tried to remove them to see if they effectively do not
add meaning to a tweet.

Stemming is the process of reducing a word to its most
basic root. For instance, words ”visiting” and ”visited” that
will both end up in the word ”visit” after stemming. Thus the
resulting word embeddings dictionary will have less words
than the one obtained without stemming as observed in
the previous section. However remaining ”root” words are
supposed to have a better embedding vector due to more
context. We use the Porter stemmer from the nltk library
to do it.

Finally we construct the tweets embedding by averaging
the embedding of all words in the tweet if they are present
in the word dictionary. If we decide to use the stemming
preprocessing we will use word2vec stemming.model
otherwise we will use word2vec.model.

4) Training classification models using tweets embed-
dings:

We can now construct tweet embeddings using our basic
dataset, with or without stop-words removal and with or
without word stemming.

Once we have the tweet embedding we will try different
classifiers both with and without regularization:

• Logistic regression
• Ridge regression
• Support vector machine with Hinge loss
The experiments can be seen in the models testing-

trained Word2V ec.ipynb notebook.
We used 80% of the dataset for training and 20% for

testing. Moreover, regularization parameter was tuned using
cross validation with 5 fold.

5) Results:
1. Basic tweets

Model Test Accuracy
Logistic Regression 0.7796
Ridge regression 0.7754
Support Vector Machine 0.7726

The best prediction was obtained with Logistic Regression
with C = 21.5 (C is the inverse of the regularization
strength).

2. Basic Tweets without stop-words

Model Test Accuracy
Logistic Regression 0.7670
Ridge regression 0.7659
Support Vector Machine 0.7659

Removing stop-words does not increase performance.
We thus did not consider this preprocessing option for the
last experience.

3. Basic tweets with word stemming

Model Test Accuracy
Logistic Regression 0.7777
Ridge regression 0.7719
Support Vector Machine 0.7748

We can see that word stemming did not increase perfor-
mance either.

B. Using a pretrained GloVe model

Because our available training dataset is relatively small,
we decided to use a pretrained model for obtaining word
embedding. We found a model called glove− twitter−200
that was trained on more than 2 billions tweets. The
dictionary contains 1,193,514 words with embeddings of
size 200.

1) Preprocessing and tweet embeddings construction:
We used the same preprocessing option as in A.3.

2) Training classification models using tweet
embeddings: We performed the same exper-
iments as in A.4. Those can be seen in the
models testing − pretrained GloV e.ipynb notebook.

3) Results:
Only the best model will be shown because this approach

did not improve performance.
1. Basic tweets

Model Test Accuracy
Logistic Regression 0.7750

2. Basic Tweets without stop-words

Model Test Accuracy
Logistic Regression 0.76290

3. Basic tweets with word stemming

Model Test Accuracy
Logistic Regression 0.7551

As we can observe, stemming words decreased the perfor-
mance a lot. This might be due to the fact that the pretrained
model did not contain some words once they were stemmed.

Finally taking a pretrained model did not increase our
performance. Indeed we might argue that the tweets used
for training did not necessarily have a positive or negative
meaning compared to our training dataset.

C. Limitation

The issue with our baseline approach is that the text
classification task is split in two parts. In order to obtain
better result we should train a model that takes as input raw



tweet and directly outputs the label (positive or negative).
Indeed, with such a pipeline the model could back-propagate
the classification error all the way through the model. We
will now look at such approaches.

IV. APPROACH USING FASTTEXT

fastText is a library developed by Facebook AI Research
that can perform text classification.

A. fastText classification model

The particularities of fastText is that words are split
into n-grams. Then each word embedding is obtained by
averaging the n grams embeddings. As a result, fastText
can learn word representation that have not been seen during
training.

Word embeddings are obtained using a continuous skip-
gram model. Word embeddings are scored differently than
Word2Vec model. Skip-gram takes a word from a context of
size n and try to predict the most likely n - 1 other words
from this context [3].

Finally the classification layer uses text embedding com-
puted as the average of word embeddings as input and the
Softmax loss function to compute the most likely label [4].

B. Training pipeline

The fastText model can be trained with multiple
preprocessing setups as well as multiple hyper-parameters.

1) Finding the best preprocessing:
In order to find the best preprocessing we created a train

set containing 80% of the data and 20% for the test set. We
applied the specific preprocessing for each set and obtained
the accuracy.

We then used the default fastText hyper-parameters to test
each configuration.

Here are the results:

Preprocessing Test Accuracy
Without preprocessing 0.8352
Removing punctuation and neutral stop words 0.8106
Adding word stemming 0.8159
Removing punctuation/special characters 0.8296
Replacing smileys by corresponding word 0.8348

We did not consider combining multiple preprocessings as
we did not observe performance increase for any of them.
For the stop-words removal we only consider neutral stop
words as we negative stop-words can change the meaning
of a sentence. For the special characters removal it included
”#”, ”@” plus basic punctuation. Finally we replaced some
smileys by their meaning: ”xD” was replaced by ”smile”,
”<3” was replaced by ”love”, ”:c” was replaced by ”sad”.

As we can see the best setup was to not use any
preprocessings.

2) Finding the best hyper-parameters:
In order to tune hyper-parameters we create 3 sets: a

training set containing 70% of the data, and a validation and
a test set each containing 15% of the data. The model with
a combination of hyper-parameters is trained on the training
set, and evaluated on the validation set (for finding best
hyper-parameters). We thus obtained the best combination
of hyper-parameters and evaluated the model on the test set.

Here are the hyper-parameters that we tuned:
• minCount: minimal number of word occurrences
• wordNgrams: max length of word n-gram
• bucket: number of buckets
• lr: learning rate
• dim: size of word vectors
• ws: size of the context window
• epoch: number of epochs
Our algorithm selected us the following parameters:

minCount = 1, wordMgrams = 3, bucket = 10, 000, 000,
lr = 0.01, dim = 200, ws = 1, and epoch = 7.

The experiments can be seen in the
fastText model tuning.ipynb notebook.

3) Results:
We obtained an accuracy of 0.8732 on our test set and

an accuracy of 0.8680 on the provided test set evaluated on
AIcrowd.

V. APPROACH USING BERT

In order to perform even better performances, we search
the state-of-the-art methods for natural language processing
and more precisely text classification and sentiment analysis.
We found the Transformer [5] architecture that was intro-
duced in 2017 and uses encoder and decoder to transform
a sentence. It differs from the previous top-notch models
with an architecture that do not use any recurrent networks
(e.g. GRU, LSTM). An interesting aspect of this architecture
is that it does not need to process a sentence in order
(this enables much more parallelization during the training).
Using this new technology, Google developed in 2018 a new
tool for natural language tasks called Bidirectional Encoder
Representations from Transformers: BERT [6]. This model
is already pretrained on a huge amount of general language
data.

We used a PyTorch implementation of BERT (already pre-
trained) and trained our model with the tweets we had.

A. Disclaimer

BERT being a complex deep-learning model, the training
requires a lot of computational power. Unfortunately, we
did not have any cloud platform GPU access nor adequate
hardware devices to perform the training on the full dataset.
We therefore performed as much as we could do, and
trained our model on 80% of the small tweets dataset (which
corresponds to 8% of the total data provided). The training



took more than 30h for only one epoch and the full pipeline
(including train and test data processing) took around 35h.

Nevertheless, the accuracy we obtained was good. We
decided to keep this option even if we weren’t able to train
completely our model, as our results were very encouraging.

Finally, as the tasks was requiring Deep Learning knowl-
edge that we were just starting to discover, we followed a
tutorial [7] [8] and used some of its code to use BERT with
PyTorch.

B. Preprocessing

First of all, as always, we need to apply a basic prepro-
cessing to our text file. We therefore remove the <user>
and <url> tags from it.

Once this is done, we need to make our dataset BERT
friendly. Indeed, our BERT model takes .tsv files with data-
frame containing 4 columns (index, label, alpha, and text).
We finally split our dataset into a train set and a test set.

This preprocessing step can be seen in the
./BERT/data prep tweets.ipynb notebook.

Then, we need to convert our data to features that can
be given to the model. For this step, we used classes code
given in the previously mentioned tutorial. Multiple python
classes are defined to transform our tsv files into a list
of objects (for each row) corresponding to input examples.
Finally, as BERT is a neural network, we could not give him
directly text features but first tokenize our tweets. BERT has
a constraint of length for a sequence of 512 tokens. In our
case, we use a maximum of 128 tokens to reduce the training
time.

C. Training

Our model is a PyTorch implementation made by Hug-
ging Face [9], it uses an Adam optimizer and download
automatically the Google pretrained BERT model for us.
As discussed above, due to our lack of adapted material,
our training is only made on a small part of the full dataset.
We therefore trained during only one epoch with batches of
size 24. The final classification layer has also already been
added so we only need to specify it as a parameter.

The result of our training is 3 files, the model containing
all the weights (pytorch model.bin), a configuration file
that gives metadata about the model file (config.json), and
finally a text file containing the vocabulary extracted from
the different tweets (vocab.txt).

The data adaptation and model training can be seen in the
./BERT/BERT train tweets.ipynb notebook.

D. Results

Once our model has been trained, we need to evaluate it on
a test dataset. To do so, we load our model files (previously
archived into a tar.gz file and placed in our cache folder),
apply the preprocessing to the test data, convert it into BERT
features and then run our model to predict the labels.

For this model, we did two training with different dataset
size. The first attempt goal was to (roughly) evaluate the
model performances without having a long training time.
The second one is the longest training and obtained the
best performances we were able to do. We present here the
results for those two attempts with BERT model.

First attempt:

Train set 1576 rows
Test set 1576 rows
Total time 3 hours
Test loss 0.3424
Test accuracy 0.854

True False
Positive 731 156
Negative 615 74

Final attempt:

Train set 157576 rows
Test set 39394 rows
Total time 35 hours
Test loss 0.2855
Test accuracy 0.8751

True False
Positive 17335 2717
Negative 17139 2203

VI. DISCUSSIONS

We would like to discuss here the different paths that we
didn’t explore due to a lack of time, computing power, or
skills.

First of all, we were not able to train our BERT model
on the full data so this is obviously our first vector of
improvement.

Then, we found multiple other Transformer models (es-
pecially into the Hugging Faces library [9]) that were intro-
ducted recently (GPT-2, RoBERTa, XLM, DistilBert, XL-
Net, CTRL, ...) and have impressive performances. Those are
state-of-the-art models for Natural Language Understanding
and Natural Language Generation. We could have tested
them on our dataset in order to obtain better performances.
Those models gives very interesting perspectives for future
NLP applications. This project raised our interest for this
domain and its recent discoveries [10].



REFERENCES

[1] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient
estimation of word representations in vector space,” 2013.

[2] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean,
“Distributed representations of words and phrases and their
compositionality,” 2013.

[3] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enrich-
ing word vectors with subword information,” 2016.

[4] A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov, “Bag of
tricks for efficient text classification,” 2016.

[5] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, L. Kaiser, and I. Polosukhin, “Attention is all
you need,” 2017.

[6] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert:
Pre-training of deep bidirectional transformers for language
understanding,” 2018.

[7] T. Rajapakse, “A simple guide on using bert for binary text
classification,” 2019.

[8] ——, “Bert binary text classification,” https://github.com/
ThilinaRajapakse/BERT binary text classification, 2019.

[9] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue,
A. Moi, P. Cistac, T. Rault, R. Louf, M. Funtowicz, and
J. Brew, “Huggingface’s transformers: State-of-the-art natural
language processing,” ArXiv, vol. abs/1910.03771, 2019.

[10] J.-C. Chappelier and M. Rajman, “Cs 431 - introduction to
natural language processing,” 2019.

https://github.com/ThilinaRajapakse/BERT_binary_text_classification
https://github.com/ThilinaRajapakse/BERT_binary_text_classification

	Introduction
	Dataset exploration
	Baseline Approach
	Using our trained Word2Vec model
	Word2Vec model
	Training the Word2Vec model
	Preprocessing and tweet embeddings construction
	Training classification models using tweets embeddings
	Results

	Using a pretrained GloVe model
	Preprocessing and tweet embeddings construction
	Training classification models using tweet embeddings
	Results

	Limitation

	Approach using fastText
	fastText classification model
	Training pipeline
	Finding the best preprocessing
	Finding the best hyper-parameters
	Results


	Approach using BERT
	Disclaimer
	Preprocessing
	Training
	Results

	Discussions
	References

