
Recommending New Artists to Users of Music Streaming
Services

Aleksandr Timofeev

Natasa Krco

Pierre Schutz

{name}.{surname}@epfl.ch

École Polytechnique Fédérale de Lausanne

Lausanne, Switzerland

1 INTRODUCTION

In this report, we present our work on the Machine Learning for

Behavioural Data (CS-421) project in the spring 2021 semester. The

project work corresponds to the Track 3 - Music, and our group

ID is G01. The project concerns the LastFM dataset, which con-

tains behavioral and demographic information on users of music

streaming services[5]. We will use this data to construct models

that recommend new artists to a user.

Research Question. We aimed to use the dataset briefly described

above to perform the following task: For a given user, recommend

a list of k artists that the user has not previously listened to. To do

this, we first estimate the probability that the given user will listen

to the music of each artist, and based on these probabilities, create

a list of the top k artists the user has not listened to yet.

Business Value. Music streaming platforms often want to help

their users discover new artists and songs (for example, the Spo-

tify Discover Weekly playlist [3]). Also, for a new customer, the

platforms want to propose the best artists without having much in-

formation about the user’s listening history. To answer the research

question, we built a solution for artist recommendations that could

enable the platforms to propose adapted artist selection for their

customers. An extension of the project is to recommending songs

and generating playlists. Predicting which artists a user would like

can also be used for advertisement (for example, promote an artist’s

concert).

2 DATASET

2.1 Data description

The LastFM dataset contains behavioral and demographic informa-

tion on 360000 users, with observations between 2002 and 2010.

The behavioral data consists of a user-artist matrix (with 360000

users and 160000 artists). Each interaction is the number of times a

user has played the music of the corresponding artist. This interac-

tion is a tuple (user id, artist id, artist name, number of plays). The

resulting matrix contains 17.5 million interactions and has high

sparsity - 99.97%. Finally, the demographic dataset provides, for

each user, information on gender, age, country, and date of signup.

2.2 Exploratory Data Analysis

The LastFMdata originally have two different datasets. The LastFM1k
have detailed behavioral information (each play is recorded with

a timestamp, artist name, and track name) for one thousand users.

Figure 1: Country distribution of users

Figure 2: Age distribution of users

The LastFM360k, contains less detailed behavioral information (to-

tal number of plays per artist for each user) but a larger number of

different users (360000 users).

1



Aleksandr Timofeev, Natasa Krco, and Pierre Schutz

During the exploration process, we changed and precise our

research questions as we had to chose the most adapted data to

run our models. The main trade-off is to choose between a larger

number of users against details in the behavioral data. LastFM360

was the most adapted dataset for our final research question (rec-

ommend a list of artists to a user) because of the higher number of

users and we didn’t require the details of the songs. The data being

extremely sparse, the high number of user increase our chances of

finding similar users but also find a wider range of preferences.

Through this exploration, we tried to answer the following ques-

tions: How do behavioral parameters can influence user prefer-

ences? How to recommend a diverse range of artists (not only the

most famous)?

Demographic: We start observing what features in our demo-

graphic dataset have a strong impact on the user’s artist preferences.

The age and gender parameters contain respectively 21% and 9% of

missing values. We observe that the dataset is heavily unbalanced

on age with 26 females for 74 males. Looking at the age distribution

(Figure. 2), we can see that most users are young (> 90% between 18

and 30), the median being 23 y/o. Regarding the countries, we have

data from 239 countries in total. Most users are in North America

and Europe, the Top 20 countries contain 82% of the users (Figure. 1).

Finally, the signup date distribution (Figure. 4) shows an increasing

number of users over the years with the largest growth in 2008

(corresponding to the last full year before data collection).

Figure 3: Distribution of plays over artists

Behavioral: First we present the distribution of plays overall

artists (Figure. 3). This distribution demonstrates the importance

of adapted recommender systems for music streaming platforms.

The distribution is long-tailed (there are many plays by famous

artists, and a few plays for less popular ones). This might lead to

a popularity bias when people listen to only popular artists. The

adequate recommender system should handle this problem by also

proposing less popular artists to users.

Figure 4: Sign-up date distribution of users

Then, to compare the impact of the demographic features, we

use the Kendall rank correlation coefficient [4] measuring the or-

dinal association between users and artists. For all features, we

computed the Kendall similarity for the Top20 artists. The simi-

larity between male and female top artists is 0.18. To observe the

similarity in function of the age, we divide the users into groups

of 5 years and compare each group together. In Figure. 6, we can

observe differences between the groups, but we can observe most

of the famous artists. Nevertheless, we do not see an increase in

the difference between groups increase the difference of age. We

can also observe that the most popular artists are represented in

most chunks. Finally, we observe the similarities between the Top20

countries (Figure. 5). Overall, there is a low similarity between the

rankings or two different countries. More generally, we note that

the Kendall tau metric is sensitive. Due to the high impact from

the features in the Top20 rankings, the correlation between groups

tends to have small values.

Conclusion: We observe a strong influence of all demographic

features on the users’ preferred artists. This can be helpful to find

adapted neighbors or perform user clustering. We also see that we

cannot use directly the number of plays per artist for a recommender

system, due to the popularity bias and will need some preprocessing.

2.3 Preprocessing

Dataset reduction: First of all, we found that our computational

power is not enough to run training with the complete dataset.

Thus, we decided to focus on the USA. It is the biggest country by

number of users. This reduction resulted in the dataset with 67000

users, 85000 artists, 3.3 million interactions, and 99.94% sparsity.

This new dataset pretty closely replicates the original distribution

(Figures 7 and 8), meaning that we can repeat obtained results with

the larger dataset if we have more powerful machines.

Preprocessing demographic data. To clean the demographic data

we carry out the following steps:

2



Recommending New Artists to Users of Music Streaming Services

Figure 5: Kendall similarity of Top20 artists per country

Figure 6: Kendall similarity of Top20 artists per 5 years age

group

• Initially, the users are referenced by their emails which are

encoded by hashes (long strings).We don’t need these hashes,

however, they occupy a lot of memory. Thus, we transform

them into int numbers. Using the same mapping from hashes

to int numbers, we transform the same column in behavioral

data.

• During our exploratory analysis, we discovered many weird

examples of ages. To avoid these weird values and don’t make

wrong guesses about them, we allow only values between

8 and 99. All other values are set to NaN. Afterward, this

column is one-hot encoded.

• ’Gender’ column contains three values: ’m’, ’f’, and NaN.

Again, with the hope that NaNs are systematic, we simply

one-hot encode this column.

• We extract four columns from the signup date column: year,

month, day, and weekday. This may help to aggregate users

in the cohorts. Inside these cohorts, users may demonstrate

similar behavioral patterns. For example, users who joined

during the promotion campaign.

Preprocessing behavioral data. We found many more issues in

the behavioral data. Thus, this part includes not only preprocessing

but also cleaning:

• In the same fashion as for user emails, we transform artist

IDs, which are hashes, into int numbers.

• We discovered 35 without artist names. Since it is not much,

we simply drop it.

• Similarly, 1% of interactions are without artist IDs and, hence

we drop them.

• Some artist names are written differently for the same IDs. To

make it consistent, we give obe of them to all corresponding

samples.

• We also conduct small cleaning of inactive users which may

induce bias in the following ML pipeline. The rule is that the

number of plays is equal to the number of different listened

to artists. There are 18 such users.

• After the previous preprocessing steps, we find the number

that the number of users in the demographic data is bigger

than in the behavioral one. Thus, we drop those users who

don’t have interactions with artists.

Totally, we lose 2% of interactions from the behavioral data which

is not much.

Preprocessing numbers of plays. In this task, we want to rank the

artists for each user and recommend based on it the list of artists.

The models which are applied in this work don’t do direct ranking.

They need to give ratings for some set of artists and using these

ratings we can obtain a ranked list of artists. Our dataset has only

the number of plays between users and artists which is implicit

feedback. Thus, we have many samples where this number is equal

to few plays (Figures 9 and 3). It causes low plays overfitting and

models predict similar values to all interactions which makes a fair

ranking of artists complicated.

One idea which may help here is to apply the logarithm transfor-

mation which makes the long-tailed distribution (Figure 9) closer

to the normal one (Figure 8). This leads to shifting predicted values

closer to the mean, however, it doesn’t increase the variance of

predictions and even decreases it since the logarithmic function

squeezes values. Therefore, this doesn’t solve the problem.

A more useful approach is to transfer the task from the implicit

to the explicit domain. To this end, we normalize the number of

3



Aleksandr Timofeev, Natasa Krco, and Pierre Schutz

Figure 7: Density of logarithmic plays for the full dataset Figure 8: Density of logarithmic plays for USA users

Figure 9: Density of plays for the USA

plays for each user. This is important because we should consider

users’ behavior with regard to themselves. Furthermore, in this

case, each user gives at least one the highest rating which increase

dataset variance. It is worth noting that the meaning of these values

is the frequency of listening to an artist by a given user. The second

step is to sort artists for each user according to their frequencies.

To obtain ratings, we use this formula:

𝑟𝑖,𝑘 = 4

©­«1 −
𝑘∑

𝑘
′
=1

𝑓 𝑟𝑒𝑞𝑘′ (𝑖)
ª®¬ , ∀𝑖 ∈ 𝑈 ,

where 𝑘 denotes a rank of the artist for a given user,𝑈 is the set of

users. This transforms the number of plays into ratings between 0

and 4. The distribution of rating is depicted in Figure 10. It is worth

noting that our models don’t use these ratings directly. The target

variable for all models is a binary which reflects whether a user

and an artist interacted. Ratings are used for other purposes which

are explained in Section 3.

Figure 10: Distribution of ratings

2.4 Train-test split

To evaluate our models, we split the dataset into three parts: train,

validation, and test. We don’t use the cross-validation approach

because of the dataset size. This approachwould be computationally

intensive.

Firstly, the dataset is split into train and test. We hold out 10%

randomly chosen interactions for each user. Therefore, we have all

users in both parts except cases when users aren’t active enough

(they have a small number of interactions). Secondly, the same split

is performed with the train part to obtain a validation set. As usual,

we train a model using the train set, adjust hyper-parameters based

on the validation set, and assess the performance of our models

using the test set.

Another important point is that the current sets contain only

positive samples, i.e. interactions. This differs the implicit feedback

from the explicit one. We don’t have a negative signal from users.

To create this signal artificially and to add variance in our dataset

(which should be the remedy for low plays overfitting), we add

negative samples. In our case, all pairs of users and artists who

4



Recommending New Artists to Users of Music Streaming Services

didn’t interact together serve as negative samples.We give a 0 rating

to all these pairs. Initially, we add the same number of negative

samples as positive ones to train and validation sets. The test set is

needed to assess how our models recommend artists. We don’t want

it to be simple. Thus, we add nine times more negative samples as

positive ones in the train set.
1

3 MODELS

3.1 Baseline Model

To evaluate the performance of our approaches, we built a trivial

model to serve as a baseline. The goal was to reproduce a simple

recommendation system. From our perspective, the simplest way to

recommend artists is to propose the most famous artist overall. We

expect them to have a high chance to be liked bymost (as they are by

definition popular). Therefore, our baseline model solution consists

of finding the 𝑘 most listened artist (by the number of users) and

return them as a list, regardless of the user. The advantages of this

model are its simpleness and speed to compute predictions. Never-

theless, it doesn’t tackle the problem of popularity bias discussed

in the data exploration.

Our following approaches try to solve this issue and propose

more personalized recommendations.

3.2 User-User Neighborhood Model (UUNM)

This first model uses neighbors’ data to predict the ratings for artists

new to a user. These neighbors correspond to the 100 users with

the most similar train interactions.

Finding user’s neighbors. Given a training dataset with 𝑛 users

that have interactions with𝑚 artists, and the total number of inter-

action 𝑖𝑡𝑟𝑎𝑖𝑛 . The train dataset is a matrix D ∈ R𝑖𝑡𝑟𝑎𝑖𝑛×3 with [user,

artist, rating] interactions. To compare user’s, we build a matrix I
such that I ∈ {0, 1}𝑛×𝑚 is the indicator function for (users, artists)

pair interaction (I[𝑢, 𝑎] if the user 𝑢 has at least 1 play from of

music of artist 𝑎, 0 otherwise). We can then compute the similarity

between two users using Pearson’s correlation. For a user pair 𝑢𝑥
and 𝑢𝑦 , we have:

𝑠𝑖𝑚(𝑢𝑥 , 𝑢𝑦) =
∑𝑚

𝑗=1 (I[𝑥, 𝑗] − I[𝑥]) (I[𝑦, 𝑗] − I[𝑦])√∑𝑚
𝑗=1 (I[𝑥, 𝑗] − I[𝑥])2∑𝑚

𝑗=1 (I[𝑦, 𝑗] − I[𝑦])2
(1)

Our resulting model corresponds to a matrix C ∈ R𝑛×100 with
for each user the correlation value of the 100 closest neighbors

(with highest Pearson’s correlation).

Computing predictions. Given a test dataset with 𝑛 users, 𝑚

artists, and 𝑖𝑡𝑒𝑠𝑡 interactions, we compute the prediction matrix P
such that P ∈ R𝑖𝑡𝑒𝑠𝑡 ,3 with columns user, artist, and prediction. For

a user 𝑢𝑥 , an artist 𝑎 𝑗 , and a set 𝑁𝑥 of 𝑢𝑥 top 100 neighbors. The

predicted rating is:

𝑝𝑥,𝑗 = 𝑟𝑥 +

∑
𝑘∈𝑁𝑥

C[𝑥, 𝑘] ∗ (𝑟𝑘 − 𝑟𝑘,𝑗 )∑
𝑘∈𝑁𝑥

C[𝑥, 𝑘] (2)

1
We chose this number due to memory and time restrictions

With 𝑟𝑥 the average rating for user 𝑢𝑥 in train data, C[𝑥, 𝑘] the
correlation between user 𝑢𝑥 and 𝑢𝑘 , and 𝑟𝑘,𝑗 the rating for user 𝑢𝑘
and artist 𝑎 𝑗 .

The result of the user-user neighborhood recommender is a list

of the highest predicted ratings for a given user.

TimeOptimization. Thismodel turned out to be very time-consuming

to compute the similarity matrix or to compute the predictions. We

discuss here the few methods implemented to improve the speed of

these. We started by computing different sets of neighbors for each

user/artist pair by selecting only users that already listened to the

artist to predict. We improved this step by building one set of neigh-

bors per user that remaining the same for all artists. This technique

enabled to trade-off time against precision. For the similarity matrix

computation, we divided the users into groups using demographic

features (country and age) to reduce the size of the resulting matrix.

Finally, we also reduced the number of artists taken into account

by the model by removing all artists with less than 100 listeners.

3.3 Latent Factor Model (LFM)

The second model that we use is the Latent Factor Model (LFM).

We aim to use matrix factorization to estimate the probability of

an interaction between a user and a given artist. We build a rating

matrix 𝑀 in which rows represent users and columns represent

artists such that element𝑀 [𝑖, 𝑗] is 1 if an interaction between user

𝑖 and artist 𝑗 exists, and 0 otherwise. When factorizing this matrix,

we use a sigmoid activation function on the estimated value to

obtain a valid probability value.

Hyperparameter tuning: We tune the number of latent factors by

performing a grid search over values {20, 50, 100, 120, 160}. Though
160 latent factors give the highest accuracy, it is also the case with

the most overfitting, which is why we use 120 latent factors in

further experiments.

Training details: We train the model using the Adam optimizer

with a learning rate 0.001, a batch size of 216 elements, andWeighted

Cross-Entropy loss over 35 epochs. As models using 2 and 3 times

the original amount of negative samples tend to overfit when

trained over 35 epochs, we regularize these using early stopping -

we train them for 15 epochs.

3.4 Neural Matrix Factorization (NeuMF)

Another model, that we use to rate artists and generate lists of

relevant artists simultaneously, is NeuMF which is taken from [2]

and adapted to our task.

Our model has three branches: user ID, artist ID, and user fea-

tures. IDs are transformed into two different embeddings, the fea-

tures are also transformed from sparse one-hot encoded vectors

into two dense embeddings by linear layers. The last one is our

novelty. The idea is that it may take into account the neighborhood

information implicitly. Our data preprocessing, which is described

in Section 2.3, results in that user features are completely one-hot

encoded vectors. Therefore, users that have similar feature vectors

may have similar embeddings which can help better predictions, es-

pecially for less active users and in the cold-start setting. Then, the

first embeddings of user branches are concatenated and multiplied

element-wise by the first embedding of the artist ID branch. The

second embeddings of all branches are concatenated and processed

5



Aleksandr Timofeev, Natasa Krco, and Pierre Schutz

Figure 11: Architecture of NeuMF

by a shallow fully-connected neural network. The neural network

output is concatenated to the result of the multiplication and passed

together to a linear layer with a sigmoid function which inferences

the probability of interaction between a user and an artist. This

architecture is summarized in Figure 11.

Training details: To train this model we use the Weighted Cross-

Entropy loss and the Adam optimizer with a learning rate of 0.0002

for 18 epochs. The number of latent factors is 16. The batch size

is 2
16
. This size is chosen because of the dataset size. Otherwise,

computation takes a long time. To improve results and avoid over-

fitting we apply dropout at the shallow neural network with the

probability parameter 0.5 as well as l2-regularization with the pa-

rameter 0.1 for all layers and embeddings. The activation function

is standard - ReLU.

3.5 Training of LFM and NeuMF

As it is aforementioned, to train the last two models, LFM and

NeuMF, we use the Weighted Cross-Entropy loss where the target

variable is 0 for negative samples (unlistened to artists) and 1 for

positive ones (listened to artists). The most important step is to

choose the right weights. We needed the weights to give more

importance or confidence to artists with the highest ratings. They

should help to avoid low plays overfitting.

We try two strategies. The first one is so-called percentile nor-

malization. Specifically, for each user, we split listened artists into

four groups based on their ratings.

• Group 1: 0 ≤ 𝑟𝑖, 𝑗 < 1

• Group 2: 1 ≤ 𝑟𝑖, 𝑗 < 2

• Group 3: 2 ≤ 𝑟𝑖, 𝑗 < 3

• Group 4: 3 ≤ 𝑟𝑖, 𝑗 < 4

It is worth noting that in this variant, we don’t use negative

samples and the loss is the Weighted Mean Squared Error. Then,

each sample is weighted by the inverse number of artists in its

group for each user. Hence samples from small groups have higher

weights. However, this approach can’t completely help with the

low plays overfitting.

Another approach is confidence. Here, we use the described set-

ting with negative samples and the Weighted Binary Cross Entropy.

The weights in this case express the confidence in ratings that we

give the artist through our transformation from implicit to an ex-

plicit domain. The most popular artists have deserved high ratings

and we should trust it. But if this artist has a small number of plays,

we can think of it as several users tried to listen to the artist and

didn’t like for example. Therefore the formula for weights is:

𝑐𝑖, 𝑗 = 1 + 𝛼𝑟𝑖, 𝑗 , ∀𝑖 ∈ 𝑈 ,∀𝑗 ∈ 𝐴,

where𝑈 and𝐴 are the sets of users and artists correspondingly and

𝛼 is a parameter. In our case, we achieve the best results if 𝛼 = 0.25.

This approach is used in our experiments and allows overcoming

the low plays overfitting.

4 EXPERIMENTAL EVALUATION

4.1 Metrics

To evaluate the models, we use the following metrics:

RootMean Squared Error (RMSE). The first metric we use is RMSE,

to determine the "reconstruction error", that is, the difference be-

tween the actual value in the rating matrix, and the predicted value.

Precision @ k. Precision is used to determine the proportion of

recommended ratings that the user rated positively.

6



Recommending New Artists to Users of Music Streaming Services

Recall @ k. Recall is used to determine the proportion of items

the user rated positively that the model recommended.

Hit Rate @ k (HR). Hit Rate is calculated by first computing the

number of hits for each user. An item is considered a hit if it is

recommended to the user, and the user rated it positively. Then,

the total number of hits for all users is divided by the number of

users in the dataset to obtain the Hit Rate.

Normalized Discounted Cumulative Gain @ k (NDCG). To mea-

sure how well the models rank artists, we use NDCG. To calculate

the value of the metric, sort the true ratings in order of predicted

ranking, divide each by the logarithm of its position and sum up to

get the Discounted Cumulative Gain (DCG). Then, divide by the

DCG of the ideal order of artists to get NDCG.

Average Reciprocal Hit Rate @ k (ARHR). ARHR is calculated

similarly to Hit Rate, but instead of simply summing the number of

hits, the ranking of each item is taken into account. The reciprocal

value of the rank of each hit is summed up, and the total sum for

all users is divided by the number of users to obtain the final value

of the metric.

4.2 Results

Basic setting. The results of the test in the basic setting are sum-

marized in Table 1. Besides all described models, we additionally

conduct experiments in three modifications of the NeuMF model:

without user features branch, with all branches i.e. as it is depicted

in Figure 11, without user IDs branch.

First of all, we want to notice that all our models outperform the

baseline. Hence, they are meaningful and propose more interesting

recommendations than simply the most popular ones. It is seen

that the UUNM exhibits the best performance by the metrics RMSE,

Precision@10, Recall@10, HR@10, and not tooworse by NDCG@10

and ARHR@10. In a meantime, the LFMmodel is the best of the rest

metrics. In addition, the NeuMFmodel is also slightly better by these

metrics than the UUNM. It implies that the UUNM suggests more

relevant recommendations while the factorization-based models

are better in positioning them. What is important more depends on

the application. For example, on one hand, if users play a random

list of tracks, they don’t want to pay attention to what is playing

and all tracks must be relevant otherwise it can be bothering. On

the other hand, when users search for a new artist, we can save

his/her time placing the most relevant recommendations as high as

possible.

Another important trade-off is between Precision@10 and Re-

call@10. The high precision means that all our recommendations

are relevant which again useful in the first example of the previous

paragraph with random lists (we don’t waste the user time). The

high recall implies that a model tries to cover all relevant examples

which are useful in the second example when we have time to filter

the proposed artists and choose the best one. Because our models

recommend the list of artists, we believe that it is more applicable

in the second example which requires a higher recall. That is what

we observe for all our models in Table 1.

Although all models are better than the baseline, it is hard to

say that we give many good recommendations at high positions

which should satisfy our users. For example, the UUNM has 3.49

by HR@10 which means that on average each user sees only 3-4

relevant recommendations out of 10 as well as NDCG@10 is 0.67

which implies that the model puts relevant recommendations at

the top not often.

The bad performance of the NeuMF model and small variance in

the results in dependence on the including/excluding user branches

can be explained by the lack of tuning architecture parameters. One

layer for the user features branch might be not enough as well as

we need to find a better number of layers for the shallow neural

network, check different activations, etc.

Despite the performance of the UUNM, we can’t proceed in the

following experiments with this model since its inference time

is too long. The good performance of this model also tells us that

considering the neighborhood information is important in this task.

Different percentage of negative samples. Originally, we add the

same number of negative samples as positive ones to the train set.

The logic is that usually, ML algorithms work better in balanced

settings. However, it is better to verify. To this end, we conduct

experiments with different percentages of the negative samples for

each user in the train set with LFM and NeuMF models. The results

are presented in Figure 12.

One may notice that the best performance for the NeuMF is

achieved when the percentage of negative samples is about 0.8.

The same can be concluded for the LFM. Though, its plots are not

monotonic as for the NeuMF. Therefore, our original hypothesis

about the same number of negative samples is not correct and the

better performance can be achieved with an imbalanced setting.

The further increase of the percentage is restricted by memory and

time requirements that we can’t ensure.

Cold-start. Lastly, because of the NeuMF model structure with

the user features branch, we decided to explore how it works in the

cold-start setting. Intuitively, this branch should generate for users

who are close to those in the train set similar embeddings. Therefore,

these embeddings implicitly take into account the neighborhood

information and may improve predictions for new users. To this

end, we hold out 1000 users to test the cold-start setting. The results

are provided in Table 2.

We see that all models again outperform the baseline. The model

with both user branches is the best one. However, results differ

only slightly which again means that we need better tuning of

architecture parameters. It is seen that models are good enough in

giving relevant recommendations and positioning them.

5 FUTUREWORK

First of all, we didn’t do any feature selections though two of our

models are based on user features. For example, it is possible to

decrease the number of features by PCA keeping themost important

ones. Careful selection may boost the performance of all models at

the same time.

Another interesting area is to explore the performance of the

models by coverage, diversity, and/or novelty. These metrics are

important for building powerful recommending systems. Because

we don’t want to ignore some not popular artists as well as we

should propose something new and surprise users for the sake of

their service satisfaction.

7



Aleksandr Timofeev, Natasa Krco, and Pierre Schutz

Table 1: Comparison of models in the basic setting

Models RMSE Precision@10 Recall@10 HR@10 NDCG@10 ARHR@10

Baseline - 0.02 0.04 0.18 0.09 0.07

UUNM 0.20 0.35 0.71 3.47 0.61 1.13

LFM 0.25 0.30 0.62 3.04 0.67 1.24

NeuMF w/o UF 0.26 0.28 0.59 2.76 0.62 1.14

NeuMF w/ UF 0.25 0.29 0.59 2.91 0.64 1.16

NeuMF only UF 0.25 0.29 0.59 2.90 0.64 1.15

Figure 12: Results of LFM and NeuMF models with different number of negative samples in the test set

Table 2: Results of the NeuMF model in the cold-start setting

Models RMSE Precision@10 Recall@10 HR@10 NDCG@10 ARHR@10

Baseline - 0.18 0.03 1.76 0.47 0.72

NeuMF w/o UF 0.26 0.84 0.15 8.10 0.77 2.43

NeuMF w/ UF 0.28 0.86 0.16 8.57 0.77 2.53

NeuMF only UF 0.27 0.85 0.16 8.51 0.77 2.51

Time and space optimization should be implemented to improve

the User-User Neighborhood model and speed up the prediction

process. We can also improve the similarity metric computation

using ranking values (instead of binary interactions) or try user-

neighborhood learning techniques.

The main task for further work on the LFM model is to use

regularization to reduce overfitting. Combined with regularization,

tuning the number of latent factors could be done more extensively,

as currently the value with which the model achieves the highest

accuracy overfits.

Finally, the NeuMF model should be better than at least the LFM.

The poor results might be explained by the lack of tuning archi-

tecture parameters. Correspondingly, the feature should include

strengthening of the user feature branch. Perhaps, it doesn’t provide

good embedding using one layer. Additionally, it is better to push

explicitly the model to create good embeddings through adding

auxiliary losses or using an autoencoder structure. Furthermore, it

would be nice to explore other parameters of the neural network

such as the depth and the width, different activation functions, etc.

If this doesn’t help, it is possible to include the neighborhood in-

formation, which is important according to our experiments, using

8



Recommending New Artists to Users of Music Streaming Services

other approaches. For example, in [1], the neighbors are those who

listened to the same artist. This way, we can also use the neighbor-

hood information for artists because we can connect them through

the same users. Another approach is to find clusters of users and

include a cluster number through embeddings.

6 CONCLUSION

This project goal was to build and evaluate machine learningmodels

for recommending new artists to music streaming services’ users.

Also, use appropriate methods of data processing and model tuning

to improve their performance. All implemented models outper-

formed the baseline model, which shows that they are performing

and produce meaningful results. In the basic setting, the User-User

Neighborhood model performed the best but took too long to test.

This challenge motivates further work on optimizing the inference

time to enable computing new experiments in the other settings

that showed improvement for the LFM and NeuFM models. We

improved the performance of the LFM and NeuMF models by in-

creasing the number of negative samples, and NeuMF had solid

results when tested in the cold-start setting. As there are still many

ways to further tune these models, with further work on proper

tuning and optimizing, these results could be a good starting point

for building a recommender system.

REFERENCES

[1] Ting Bai, Ji-Rong Wen, Jun Zhang, and Wayne Zhao. 2017. A Neural Collaborative

Filtering Model with Interaction-based Neighborhood. 1979–1982. https://doi.

org/10.1145/3132847.3133083

[2] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng

Chua. 2017. Neural collaborative filtering. In Proceedings of the 26th international
conference on world wide web. 173–182.

[3] Spotify. 2021. Discover Weekly Playlist. https://www.spotify.com/us/

discoverweekly/.

[4] Wikipedia. 2021. Kendall rank correlation coefficient. https://en.wikipedia.org/

wiki/Kendall_rank_correlation_coefficient.

[5] Òscar Celma. 2010. Last.fm Dataset 360k users user top artists. http://ocelma.net/

MusicRecommendationDataset/lastfm-360K.html.

9

https://doi.org/10.1145/3132847.3133083
https://doi.org/10.1145/3132847.3133083
https://www.spotify.com/us/discoverweekly/
https://www.spotify.com/us/discoverweekly/
https://en.wikipedia.org/wiki/Kendall_rank_correlation_coefficient
https://en.wikipedia.org/wiki/Kendall_rank_correlation_coefficient
http://ocelma.net/MusicRecommendationDataset/lastfm-360K.html
http://ocelma.net/MusicRecommendationDataset/lastfm-360K.html

	1 Introduction
	2 Dataset
	2.1 Data description
	2.2 Exploratory Data Analysis
	2.3 Preprocessing
	2.4 Train-test split

	3 Models
	3.1 Baseline Model
	3.2 User-User Neighborhood Model (UUNM)
	3.3 Latent Factor Model (LFM)
	3.4 Neural Matrix Factorization (NeuMF)
	3.5 Training of LFM and NeuMF

	4 Experimental Evaluation
	4.1 Metrics
	4.2 Results

	5 Future Work
	6 Conclusion
	References

